

ALMAX[™] is a novel **patented composite** consisting of randomly oriented, discontinuous, ceramic fibers reinforcing a high-strength aluminum matrix. ALMAX[™] is ideal for **high temperature and high friction applications** such as bearing liners, races, and bushings, and is a drop-in replacement for specialty high performance alloys.

Performance

- High-strength (80 ksi UTS at room temperature), isotropic
- Retains 80% of strength at 400 °F, more than 3X traditional aluminum alloys
- Superior wear resistance compared to hardened steel at one-third the density (2.96 g/cm³)
- Superior formability compared to other composites (machinable, weldable, and forgeable)
- 30% decreased CTE compared to 6061 AI

Available as cast billets or machined components

Military Vehicles

Commercial Markets

- Fixed-wingHelicopters
- AerospaceMotor sports

Heavy trucks

- > Tilt rotor
- > UAVs
- ➢ Turbomachineryvehicles➢ Oilfield Drilling
- Combat vehicles

ALMAX[™] Ring and Billet Stock

CPS Technologies 111 S. Worcester Street Norton, MA 02766 Steve Kachur, PhD Vice President of Technology skachur@cpstechnologysolutions.com Joe Englin Director of Business Development jenglin@cpstechnologysolutions.com

www.cpstechnologysolutions.com

© 2025, CPS Technologies

CPS is actively expanding ALMAX[™] applications, improving performance and extending manufacturability. Properties and additional products are summarized below.

٢M

ALMAX^{III} ALMAX^{III} ALMAX^{III} A356-T6 A356-T6 A356-T6 C355 40 -400 -200 0 200 400 600 800 Temperature (°F)

CPS Technologies

PERFORMANCE DATA

Property	Test Temperature, °F					
	70	100	200	300	400	500
FTU, ksi	77.0	75.5	72.3	65.1	62.0	40.0
FTY, ksi	64.0	64.1	63.7	59.3	50.9	35.0
FCY (1%), ksi	67.4	67.1	63.6	56.5	45.8	30.0
Flex Strength (1%), ksi	55.8					
Tensile Modulus, Msi	13.5	13.2	13.2	12.9	12.1	10.9
Comp. Modulus, MSI	14.4	14.0	13.5	13.0	12.0	11.0
Elongation, %	1.8	2.0	>2.5	>2.5	>2.5	>2.5
K _{ic} , ksi √in	18.1					
CTE, ppm/°F	9.4	9.4	9.4	9.4	9.4	9.4
K, W/m-K	91.6	92.9	97.4	101.8	106.3	110.7

